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HAMILTONIAN GRAPH REPRESENTATION OF ZEOLITE FRAMEWORKS 
AND Si, A! ORDERING IN THE FRAMEWORK 
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Department of Applied Chemistry, Gunma University, Kiryu, Gunma, Japan 

Abstract 

In the first part, a topological characterization of various zeolite frameworks is 
performed on the basis of the Hamiltonian graph. It affords a simple representation of 
the framework connectivity, and presents some possibility of the classification as well 
as the prediction of unknown frameworks. In the second part, a simple and direct 
method based on the connectivity matrix is presented, by which all the possible A1 
distributions in a given framework are derived exhaustively under the restriction of 
Loewenstein's rule. An example of A1 preference site determination is applied for 
zeolite ZSM-5 and compared with the result by the SCF-MO method. 

1. Introduct ion 

Microporous zeolite frameworks are constructed from interlinking SiO4 and 
A104 tetrahedra to form channels and cavities in which relevant ion exchangeable 
or catalytic activity and selectivity are performed. The physical and chemical properties 
of zeolites depend not only on the topological characteristics of the framework, but 
also on the Si, A1 distribution in the framework. The main current topics in zeolite 
structural chemistry are, therefore, to clarify the principle of framework construction 
as well as the extent of the framework effect on the Si, A1 distribution. In this paper, 
some graph-theoretical approaches have been introduced to develop the problems. 

2. Hamiltonian graph representation of zeolite f rameworks 

As mentioned above, the diversity of zeolite frameworks depends on that of 
the geometrical connectivity of constituting TO 4 tetrahedra. In order to clarify the 
topological characteristics of the frameworks, several concepts have been presented 
to date: 

(1) Secondary building unit (SBU) [1]. 

(2) Loop Configuration (LCG) [2]. 

(3) Concentric cluster (CCL) [3]. 

(4) Coordination sequence (CSQ) [4]. 

(5) Coordination degree sequence (CDS) [3]. 
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Here, (1), (2), and (3) conccm the graphical representation of the framework 
characteristics, while (4) and (5) concern their mathematical quantifications. The 
SBU concept is a simple and effective geoemetrical means of characterizing the 
complicated zeolite frameworks, and a total of sixteen SBUs are now available [5]. 
The LCG concept concerns the configuration of 4-membered rings around a given 
node site. The LCG can be completely incorporated into the CCL concept, which 
was formerly presented as the Coordination Network [6,7]. These graphical 
representations aim at representing the framework characteristics in terms of constituent 
basic units or clusters, but no satisfactory results have as yet been presented. 

As is well known, zeolite frameworks are in a crystalline state, which means 
the framework is constituted of unit cells arranged in a given translational symmetry. 
Therefore, it is fully expected that basic structural characteristics are condensed on 
the node connectivity in the unit cell. 

Figure l(a) shows a simple 3-connected network of carbon graphite. The unit 
cell contains two carbon atoms designated by a and b. An a is connected with three 
b's, while a b is connected with three a's. Thus, their connectivity can be simply 
represented graphically as in fig. l(b). Figure 2(a) shows a 4-connected framework 
of cristobalite SiO 2, one of the silica polymorphs. This compound contains four Si 
atoms in the unit cell designated by a, b, c and d. An a is connected with two b's 
and two d's, a b with two a's and two c's, and so on. Their connectivities are shown 
in fig. 2(b). A more complex example of a sodalite zeolite framework is shown in 
fig. 3(a), and its graphical representation in fig. 3(b). Figure 4(a) shows a framework 
of zeolite A containing 24 nodes in the unit cell, and its graphical representation 
is given in fig. 4(b). It is interesting to note that all these graphs have a cycle which 
contains all the nodes in the unit cell. This means that the graph is Hamiltonian [8]. 
At the present time, we cannot conclude that all the 4-cormected frameworks are 
Hamiltonian, but most of the real zeolite frameworks, including both natural and 
synthetic ones, have proved to be Hamiltonian, although tests have been run only 
for frameworks with the maximum node number 36 in the unit cell. Various patterns 
which appear in the graph reflect the connectivities between them, but it must be 
noted that the graph sometimes shows unexpected patterns, such as 4-membered 
rings in the cristobalite framework (fig. 2(b)) or triple bonds in the graphite one 
(fig. l(a)), all of which cannot be expected in thcir real frameworks. These are 
obviously due to the restriction of translational symmetry. If we extend the unit cell 
size appropriately, the unfavorable patterns would be eliminated to disclose the real 
6-membered rings or the single bonds. 

Anyway, a given framework can be represented in terms of a corresponding 
Hamiltonian graph. Therefore, structural correlations between the frameworks can 
now be readily drawn on the basis of these Hamiltonian graphs. At this point, it is 
necessary to clarify the construction principle of the Hamiltonian graphs and correlate 
them with each other. 

In the 4-connected frameworks, each node has four bonds, two of which are 
used for the construction of the Hamiltonian path, and the other two for the construction 
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Fig. 1. (a) Carbon graphite network, and (b) its graphical representation. 
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Fig. 2. (a) Cristobalite SiO 2 framework, in which oxygen 
atoms are omitted, and (b) its graphical representation. 

of the framework. From the fact that a framework edge is formed by a connection 
of  two bonds, it can be easily proved that the total number of  framework edges 
except for the Hamiltonian path becomes the number of  nodes P. Therefore, the 
possible number of  Hamiltonian graphs is determined by the number of  different 
distributions of  the P framework edges over the P nodes. In their derivation, 
we first notice that the graph aimed at is regular of degree 2, and therefore 
every component is a cycle [8]. This means that the graph can be represented 
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Fig. 3. (a) Sodalite framework, and (b) its graphical representation. 
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Fig. 4. (a) Zeolite A framework, and (b) its graphical representation. 

by a simple permutation notation (12)(345) or (12)(354), as shown in fig. 5. 
Similarly, the Hamiltonian graph of the sodalite framework in fig. 3(b) can be 
represented as (1,5,9,4,8,12,7,11,3,10,2,6), and that of zeolite A in fig. 4(b) as 
(1 ,10,7 ,4 ,22,19,16,13)(3 ,9 ,12,15,18,6 ,21,24)(2 ,5 ,14,17)(8 ,11,20,23) .  Thus, the 
distributions of  edges can be performed mathematically on the basis of the permutation 
operations. Some examples for P = 3, 4 and 5 are shown in fig. 6. In the case of 
P=3, we have only one kind of Hamiltonian graph. This is exactly the type of  
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Fig. 5. Hamiltonian graph notation 
by a permutation notation (12) (345). 

quartz, one of the silica polymorphs, SiC h. In the case of P = 4, we have four kinds. 
Two of them are the types of cristobalite (4 -3 )  and tridymite (4-1) ,  which are also 
well-known silica polymorphs. The existence of the remaining two types (4 -2 ,  
4 - 4 )  is not as yet known. In the case of P = 5, we have six kinds of  Hamiltonian 
graphs, none of which are yet known as the real structure. The Hamiltonian graphs 
obtained can be classified on the basis of their permutation configuration. For 
example, both 5 -1  and 5 - 2  in fig. 6 contain two permutation cycles such as (12)(345), 
while 5 - 3 ,  5 - 4  and 5 - 5  contain one permutation cycle such as (12345), from 
which they can be easily classified into two groups. 

As shown here, the Hamiltonian graph is useful not only for a simple 
representation of complex connectivity, but also for prediction as well as classification 
of zeolite frameworks. As will be shown in the next section, this also serves for 
characterizing the A1 distribution in the frameworks. 

3. Determination of  Si, AI distribution in zeolite frameworks 

The Si, A1 distribution in zeolite frameworks cannot be uniquely determined 
by the X-ray diffraction method, because their X-ray scattering powers are nearly 
the same. However, their local ordering can now be precisely determined by 
solid state 29Si MAS NMR spectroscopy. One of the distinguished results is a 
confirmation of  the validity of Loewenstein's rule, that is~ the avoidance rule of an 
A1-A1 pair in the first neighbor. On the basis of these data, various long-range 
ordering models have been presented and correlated with the physical and chemical 
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properties [9-14].  On the other hand, more strict quantum chemical studies have 
been performed to determine the A1 sites in the framework [15-24].  If the nodes 
involved are small in number, this can be easily done, but as the number increases, 
it becomes very difficult to complete. In this paper, a simple and complete method 
based on the connectivity matrix is introduced, by which all possible distributions 
can be exhaustively derived. In the following, we make only two simple assumptions. 

(1) The translational symmetry inherent to the zeolite framework also holds in 
the Si, A1 distribution. This means the distribution can be treated within a 
given unit cell. 

(2) The distribution strictly obeys Loewenstein's rule, that is, the A1-A1 pair 
avoidance rule. 

The connectivity relation of  the framework nodes can be uniquely represented 
by a connectivity matrix having 0 and 1. In a given matrix, the summation on each 
node in a column or a row gives 4 in number (fig. 7(a)), reflecting the number of 

(a) (b) 

node number node number 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

1 0 0 0 0 1 1 0 0 0 0 1 1 -2 0 0 0 - 1  -1 0 0 0 0 - 1  -1 
2 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 
3 0 0 0 1 1 0 0 0 0 1 1 0 0 0 -2-i -I 0 0 0 0 -i -i 0 
4 0 1 1 0 0 0 0 1 1 0 0 0 0 i-i 0 0 0 0 1 1 0 0 0 
5 1 0 1 0 0 0 1 0 1 0 0 0  - i  0 - I  0 0 0 1 0 1 0 0 0 
6 1 1 0 0 0 0 1 1 0 0 0 0  - 1 1 0 0 0 0 1 1 0 0 0 0  
7 0 0 0 0 1 1 0 0 0 0 1 1  0 0 0 0 1 1 0 0 0 0 1 1  
8 0 0 0 1 0 1 0 0 0 1 0 1  0 0 0 1 0 1 0 0 0 1 0 1  
9 0 0 0 1 1 0 0 0 0 1 1 0  0 0 0 1 1 0 0 0 0 1 1 0  
0 0 1 1 0 0 0 0 1 9 0 0 0  0 1 - 1 0 0 0 0 1 1 0 0 0  

1 1 1 0 1 0 0 0 1 0 1 0 0 0  - 1 0 - 1 0 0 0 1 0 1 0 0 0  
12 1 1 0 0 0 0 1 1 0 0 0 0 -1 1 0 0 0 0 1 1 0 0 0 0 

4 4 4 4 4 4 4 4 4 4 4 4 -6 4 - 6  2 0 2 4 4 4 2 0 2 
node index 

Fig. 7. (a) Connectivity matrix, and (b) its substituted one of sodalite 
framework. Numerals in the lower line show the node indices. 

connective bonds. However, when a given node is substituted for an A1 atom, we 
assume the sign of the matrix elements of the reference node along both column 
and row is changed, and substitute the number - 2  at its diagonal site; then the 
summation on each node gives any of six kinds of numbers, such as - 6 ,  - 4 ,  - 2 ,  0, 
2, 4 (fig. 7(b)). We call them "node indices". They are determined in terms of the 
connectivity relation between one centering node and its first surrounding nodes. 
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Fig. 8. Node indices and their corresponding clusters in which open 
circles denote A1 atoms, while solid circles denote Si atoms. 

As shown in fig. 8, the index 4 denotes one centering Si node to be connected with 
four neighboring Si nodes, the index 2 with three Si's and one A1, the index 0 with 
two Si's and two Al's, the index - 2  with one Si and three Al's, the index - 4  with 
four Al's, and the index - 6  has one centering A1 node to be connected with four 
Si nodes. It must be mentioned that in these indices, only the node having an 
index 4 is permitted to be replaced with A1. Otherwise, Loewenstein's rule will be 
violated. 

The process of distribution is shown in table 1, in which a sodalite cage 
having 12 nodes is taken as an example. Starting with a sequence whose node 
indices are all numbered with 4, one A1 substitution is carried out from the left-hand 
side to the right-hand side. The total number of one substitution sequence is 12. In 
the second substitution, one more A1 substitution can be carried out on the one A1 
substitution sequence already obtained. In this case, we must select a node siting 
on the right-hand side of the node of index -6 .  This avoids duplication of counting. 
Thus, the total number of the two substitution sequences becomes 42. The procedure 
is continued until the node index 4 no longer occurs in the sequence. Thus, we 
obtain a final substitution number 6 (Si/A1 = 1). This is the maximum substitution 
number permitted for a sodalite cage under the restriction of Loewenstein's rule. 
Some of the application examples for other frameworks are shown in table 2. It is 
noteworthy that in this distribution process, not only the total number for each 
substitution number, but also the maximum substitution number can be determined. 
For example, in the albite framework, the maximum substitution number is determined 
to be 6 (Si/A1 = 5/3), in zeolite A to be 9 (5/3), in scapolite to be 8 (2/1), and in 
zeolite L to be 12 (2/1). 

The distributions are obviously determined by the topological characteristics 
of the framework. Conversely, this means that the frameworks having the same 
distribution numbers and the maximum substitution number can be identified to be 
of the same topological characteristics. 

As already stated, it is very difficult to determine the exact A1 site in zeolite 
frameworks, both experimentally and theoretically. The method mentioned above 
shows all of the possible distributions, but does not indicate which distribution is 
actually realized; for that, an exact electrostatic potential or quantum chemical 
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Table 1 

Distribution process of AI atoms on the node sites of a sodalite framework. Column 1 (A1 no.) shows 
the number of A1 atoms to be distributed, column 2 (S) the sequential number given for different 
A1 distributions, and columns 3 to 14 give the node indices on the corresponding node sites 

A1 no. S Node number 
1 2 3 4 5 6 7 8 9 10 11 12 

0 1 4 4 4 4 4 4 4 4 4 4 4 4 

1 1 - 6  4 4 2 2 4 4 4 4 4 2 2 
2 4 - 6  4 2 4 2 4 4 4 2 4 2 
3 4 4 - 6  2 2 4 4 4 4 2 2 4 

12 2 2 4 4 4 4 2 2 4 4 4 - 6  

2 1 - 6  - 6  4 2 2 0 4 4 4 2 2 0 
2 - 6  4 - 6  2 0 2 4 4 4 2 0 2 
3 - 6  2 2 - 6  2 2 4 2 2 4 2 2 
4 - 6  4 4 4 0 0 - 6  4 4 4 0 0 

42 0 2 2 4 4 4 0 2 2 4 - 6  - 6  

3 1 - 6  - 6  - 6  0 0 0 4 4 4 0 0 0 
2 - 6  - 6  4 2 0 - 2  - 6  4 4 2 0 - 2  
3 - 6  - 6  4 0 2 - 2  4 - 6  4 0 2 - 2  
4 - 6  - 6  4 0 0 0 4 4 - 6  0 0 0 
5 - 6  4 - 6  2 - 2  0 - 6  4 4 2 - 2  0 

52 0 0 0 4 4 4 0 0 0 - 6  - 6  - 6  

6 1 - 6  - 6  - 6  - 4  - 4  - 4  - 6  - 6  - 6  - 4  - 4  - 4  
2 - 4  - 4  - 4  - 6  - 6  - 6  - 4  - 4  - 4  - 6  - 6  - 6  

Table 2 

Number of possible A1 distributions in the restriction of Loewenstein's rule. 
Column 1 (A1 no.) shows the number of A1 atoms to be distributed, and 
columns 2 to 6 total numbers for different A1 distributions in Sod (sodalite), 
alb (albite), ZTA (zeolite A), sca (scapolite), and LTL (zeolite L) 

A1 no Sod alb LTA sca LTL 

6 
7 
8 
9 

10 
11 
12 

1 12 16 
2 42 88 
3 52 200 
4 33 180 
5 12 48 

2 8 

24 24 36 
228 228 558 

1112 1104 4896 
3036 2936 26925 
4776 4336 97212 
4316 3480 235054 
2184 1440 381888 

588 264 412595 
64 288952 

124944 
30240 

3148 
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calculation based on the three-dimensional configuration is needed. Instead of  this, 
a simple approach is used here. In the above distribution, if  Loewenstein 's  rule 
strictly holds, individual distributions can be fully expected to occur with equal 
probability for a given substitution number. In this condition, the summation of  A1 
numbers on each node site gives the expected occupancy frequency at the site. 

One application example for ZSM-5 will be shown here. ZSM-5 is a well- 
known methanol-to-gasoline conversion catalyst. ZSM-5 (space group Pnma) contains 
96 nodes in the unit cell, as well as 12 crystallographically independent nodes. The 
distribution is performed on the 12 independent nodes. Table 3 shows the results, 

Table 3 

Predicted A1 occupancy frequencies on the node sites in a ZSM-5 framework. Column 1 (A1) 
shows the number of A1 atoms to be distributed, column 2 (Z) the total numbers for different A1 
distributions, and columns 3 to 14 the A1 occupancy frequencies on the corresponding node sites 

A1 Z Node number 
1 2 3 4 5 6 7 8 9 10 11 12 

1 12 1 1 1 1 1 1 1 1 1 1 1 
2 44 7 7 7 7 7 8 7 8 8 7 8 
3 58 13 14 13 13 14 13 18 12 17 17 12 18 
4 26 6 10 6 6 11 6 14 4 10 11 5 13 
5 2 0 2 0 0 2 0 2 0 1 1 0 2 

in which column 1 indicates the substitution number of  A1, column 2 the total 
number of  distributions for each substitution number, and column 3 the expected 
occupancy frequency of  A1 on each node site. In the 1 and 2 substitutions, there 
is no distinct difference in the site occupancy, but with increasing substitution 
number, the difference becomes remarkable. In the case of  the maximum substitution 
number 5, it is obvious that the node numbers 2, 5, 7 and 12 are preferentially 
occupied by A1 atoms. Fripiat et al. [21] tried to characterize the Si, A1 distribution 
by the SCF-MO method, and determined the preference site of  A1 atoms as the node 
numbers 2 and 12. The present result is consistent with the one by Fripiat et al. The 
A1 preference site in the ZSM-5 framework can be represented on the Hamiltonian 
graph, which gives a direct measuring for topological distances between the A1 
nodes distributed in the framework (fig. 9). 

It is now possible to derive all the Si, A1 distributions in both the framework 
topological and Loewenstein 's  restrictions. Although a number of  papers have been 
published on the Si, A1 distribution in the framework which were determined by the 
X-ray or 29Si N M R  method, it must be noted that most of  them give the result 
averaged statistically and it is impossible to recognize their real distribution. However,  
if  the present result is combined with experimental data, a deeper insight into the 
distribution will be possible. Details of  this will be described in a future paper. 
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Fig. 9. (a) ZSM-5 zeolite framework, and (b) its Hamiltonian graph represen- 
tation, in which open circles show the predicted preference sites of A1 atoms. 
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